
Identification of charge states of indium vacancies in InP using the positron-electron auto-

correlation function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 9263

(http://iopscience.iop.org/0953-8984/10/41/008)

Download details:

IP Address: 171.66.16.210

The article was downloaded on 14/05/2010 at 17:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/41
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 9263–9271. Printed in the UK PII: S0953-8984(98)95760-5

Identification of charge states of indium vacancies in InP
using the positron–electron auto-correlation function

W LiMing†, S Fung†, C D Beling†, M Fuchs‡ and A P Seitsonen‡
† Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
‡Fritz-Haber-Institut, der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem,
Germany

Received 9 July 1998

Abstract. The positron–electron auto-correlation function (ACF) is calculated for neutral and
negatively charged indium vacancies in InP as well as a perfect InP material.Ab initio
calculations are performed for the electron wave functions in the density functional theory
(DFT) with the local density approximation (LDA) for the exchange–correlation potential of
electrons. The positron wave function is calculated by directly diagonalizing the single-particle
Hamiltonian of the positron in the LDA with a density-gradient correction. It is found that
the ACF is suitable for identifying the charge states of the indium vacancies. Neutral indium
vacancies greatly diminish the nearest peaks and dips (P1 and D1) of the ACF which are located
after the nearest-neighbouring lattice points in the case of a perfect material. Negatively charged
indium vacancies nearly eliminate these peaks and dips, together with the next-nearest peaks
(P2) located at the next-nearest-neighbouring lattice points. Therefore, the diminution of the P1
and D1 can be taken as an indication of the formation of neutral indium vacancies, and that of
the P2 can be taken as an indication of the formation of negatively charged indium vacancies.
However, the three negative charge states of the indium vacancies (V1−

In , V2−
In and V3−

In ) are still
difficult to distinguish from each other by means of the ACF method.

1. Introduction

Point defects in semiconductors are of great importance to the electronic and optical
properties of semiconductors. Firstly, they are closely related to the unreliability and
degradation of the electronic or optical devices. Secondly, they may work in a beneficial
way in some semiconductor devices. Point defects can acts as donors, acceptors, carrier traps
or scattering or recombination centres, causing shallow or deep levels in the energy gaps
of semiconductors. A point defect can be electrically active, resulting in different charge
states: positive, neutral or negative, to compensate the dangling bonds at the point defect.
However, the identification of the point defects in materials has proved to be difficult.

The positron annihilation technique has proved to be a powerful tool to detect point
defects in materials. This is because positrons can be trapped by point defects, where the
chemical environment is very different from that in the bulk, thus giving different positron
lifetimes and some other characteristics. Accordingly, a great number of studies on different
types of point defect have been carried out using the positron annihilation technique in the
past decades [1–3]. Many studies are stimulated by the observation of the deep level EL2
in GaAs, which is believed to be caused by the As antisites [4]. An interesting observation
is that positrons are much more sensitive to negatively charged states of point defects since
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this type of defect is more attractive to positrons. When a transition between different
charge states takes place the point defects may change their positron trapping rates and
hence the average positron lifetimes in them. This effect has been observed by Corbel and
colleagues, who found a transition from V−As to V0

As in n-GaAs by measuring the positron
lifetime (257 ps to 295 ps) at different temperatures [5, 6]. They also found that this
transition corresponds to a narrower momentum distribution (MD) from their measurements
of two-dimensional angular correlation of annihilation radiation (2D-ACAR). Therefore, the
positron annihilation technique provides fingerprints for the charge states of the point defects
in materials.

There is growing interest in the characterization of the properties of defects in the III–V
compound semiconductor InP [7–10]. The undoped LEC-grown InP material is n-type.
It was reported that this material can be compensated to be semi-insulating by means of
annealing at 800–900◦C for about 90 hours. As pointed out by Zhaoet al [10], there
may exist many types of point defect in this material, including indium vacancies (VIn),
phosphorus vacancies (VP), hydrogen-complex vacancies (VInH4), phosphorus antisites (InP)
and indium antisites (PIn). Furthermore, these vacancies may have different charge states.
According to the calculations of Seitsonenet al [11], all charge states of indium vacancies
are located in the lower half of the gap, and most other point defects are located in the
upper half of the band gap. Indeed, Polity and Engelbrecht had found a few negative charge
states in their electron-irradiated InP samples after annealing at 430–590 K [7].

It is well known that positrons trapped in vacancies mainly annihilate with the valence
electrons, giving stronger low momentum annihilation compared to annihilation in the bulk.
Recently, Hakalaet al have calculated the MD in the vacancy clusters in Si[12]. They
found a systematic narrowing of the MD spectra as the size of the vacancy increases. In
this work, however, not the MD but the positron–electron auto-correlation function (ACF),
which is the Fourier transformation of the MD spectrum, is calculated. This is because the
low momentum information in the MD can be reflected more clearly in the higher positions
of the ACF, especially in the case of defects. Generally speaking, the ACF oscillates and
attenuates on the lattice of the crystal up to a distance of about 12Å. The nodes of the ACF
take the lattice positions with a slight outward shift. The oscillation of the ACF reflects the
periodicity of the crystal. The distortion of the periodicity can lead to the disappearance of
the oscillation of the ACF. The ACF looks like the diffraction pattern in the x-ray diffraction
measurements.

In the present work anab initio calculation based on the density functional theory (DFT)
in the local density approximation (LDA), as described by Seitsonenet al [11], has been
performed to determine the electron wave functions and densities in various charge states
of the indium vacancies in InP. We use a 54-atom supercell with the zinc-blende structure
with an indium vacancy (53 atoms). Norm-conserving separable pseudopotentials of the
Hamann type are used in the separable form of Kleinman and Bylander [13, 14]. A plane-
wave basis is used to expand the wave functions, with an energy cut-off of 8 Ryd. The
Brillouin zone is sampled with the Monkhorst–Pack 2× 2× 2 k point mesh (two specialk
points). It is believed that the positron does not affect the electronic states significantly due
to the screening effect of the electron cloud around the positron [12] although the positron
may affect the atomic relaxation of the vacancies. The positron wave function is calculated
by means of directly diagonalizing the single-particle Hamiltonian. The potential sensed
by the positron contains the Coulomb potentials from the ions and valence electrons and
the correlation potential between the positron and the electrons [16]. A density-gradient
correction to the positron annihilation has been included [17]. A brief introduction of the
formalism of the theory is given in section 2. Results and discussion are given in section 3.
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2. Theory

The positron–electron ACF is defined by [18]

B2γ (r) =
∑
i

∫
V

ψ
ep

i (s)
∗ψep

i (r + s)d3s (1)

whereψep

i (r) is the two-particle wave function of the positron–electron pair, andV is the
volume of the crystal. This wave function can be approximated using the single-particle
wave functions,ψ+(r) andψnk(r), of the positron and electron, respectively, and taking
into account the enhancement effect of the positron annihilation [19]:

ψ
ep

i (r) = ψ+(r)ψnk(r)
√
γnk(r) (2)

wheren is the electron band index,k is the wave vector, andγnk(r) is the enhancement
factor. Since we are interested in positron annihilation in vacancies, which happens mainly
between a positron and a valence electron, the summation in equation (1) can be taken
over the wave vectors in the Brillouin zone and the occupied valence electron bands. At
finite temperature the Fermi–Dirac distribution of the electrons should be included in the
summation in equation (1). To solve the electron and positron wave functions we use a
plane wave basis to expand the wave functions:

ψnk(r) = 1

�

∑
G

Cnk(G) exp[i(G+ k) · r] (3)

ψ+(r) = 1

V

∑
G

D(G) exp(iG · r) (4)

whereG are the reciprocal lattice vectors, and� is the unit cell volume. The positron
occupies the0 point in the Brillouin zone when the temperature is not very high, because
in general only one positron is involved at any time.

The electron wave functions are solved using the Car–Parrinelloab initio method based
on the DFT in the LDA for the exchange and correlation [11]. The computer program
packagefhi96md is employed [20]. The Verlet algorithm is used to relax the atomic
system. The pseudo-potentials are constructed following the scheme of Bacheletet al [13]
in the fully separable Kleinman–Bylander form [14, 15]. The energy cutoff is 8 Ryd, which
requires about 3500 plane waves in the summations of equations (3) and (4). The lattice
constant of InP is 5.87 Å. A 54-atom supercell is used to model the indium vacancy
(53 atoms) in the zinc-blende structure. The Brillouin zone is sampled by two specialk
points (2π/a)(1/4, 1/4, 1/4) and (2π/a)(3/4, 3/4,−1/4). The initialization of the wave
functions is carried out by an expansion in the pseudo-atomic orbitals. For the charged
indium vacancies a rigid background charge density is introduced in order to neutralize
the supercell. It has been assumed that the positron even in a vacancy does not affect the
electron states significantly as pointed out by Hakalaet al [12]. The positron wave function
is solved by directly diagonalizing the single-positron Hamiltonian in the plane wave basis.
The potential of the positron contains the point-core ionic potential, the electron Hartree
potential and the correlation potential of Boronski and Nieminen [16]. The density-gradient
correction of Barbielliniet al [17] has been taken into account in the correlation potential
and the enhancement factor.

The enhancement factor can be approximated as an average in the Brillouin zone,
becoming a density-dependent-only (thus a periodic) function,γ (n−(r)) [17]. Since the
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positron wave function is also a periodic function we can expand the enhancement factor
and the positron wave function together in the plane wave basis:

ψ+(r)
√
γ (n−(r)) = 1

V

∑
G

Denh(G) exp(iG · r). (5)

Finally, using the expansions (3) and (5) the ACF can be written as

B2γ (r) = 1

V

∑
k

exp(ik · r)
∑
G

exp(iG · r)
∑
n

fn(k)|
∑
G1

Denh(G1)Cnk(G−G1)|2 (6)

wherefn(k) is the Fermi–Dirac distribution function, and thek summation is taken using
the Chadi–Cohen scheme [21].

This formalism also provides a method for calculating the MD of positron annihilation
radiation, i.e., one obtains simply the MD from the Fourier transformation of the ACF.

As a test for the positron and electron wave functions we also calculate the positron
lifetimes in a perfect InP material and in different charge states of indium vacancies. Positron
lifetime is the inverse of positron annihilation rate, which is given by [17]

λ = πr2
0c

∫
n+(r)n−(r)γ (n−(r))d3r (7)

wheren+(r) andn−(r) are the positron and electron densities, respectively.

3. Results and discussion

First, we report the positron lifetimes in a perfect InP material, and in InP materials with
neutral indium vacancies and negatively charged indium vacancies, as listed in table 1. The
lifetime (241.5 ps) in a perfect InP material is close to the experimental value (240.6 ps)
measured by Polity and Engelbrecht [7]. The lifetime (313.5 ps) for the neutral indium
vacancies is much larger than that calculated by Alataloet al (280 ps). Polity and
Engelbrecht found a component of 310 ps in their electron irradiated InP materials after
annealing at 430–590 K. This component was attributed to divacancies, because it is much
larger than the value of Alataloet al for indium mono-vacancies. This may not be the case.
We found that the calculation of positron lifetimes is very sensitive to the atomic relaxation
of the vacancies. An incomplete relaxation will lead to lower positron lifetime, e.g., the
calculated lifetime is only 248 ps in neutral indium vacancies without relaxation. Therefore,
we prefer to assign the 310 ps component of Polity and Engelbrecht to the positron lifetime
in neutral indium vacancies. Indeed, they have observed a strong temperature dependence
of this component, which suggests a transition of the indium vacancies between different
charge states. The point is that there is a clear tendency that the positron lifetime decreases
with increasing negative charge of the indium vacancy.

Table 1. Positron lifetimes (in ps) in a perfect InP material, and in indium vacancies with
different charge states.

Perfect InP V0In V1−
In V2−

In V3−
In

Present work 241.5 313.5 303.2 272.9 262.0
Experimenta 240.6 310±15 — — —

a The result measured Polity and Engelbrecht [7]. The 310 ps component is explained as the
lifetime in divacancies.
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(a)

(b)

Figure 1. Auto-correlation function (a) in a perfect InP material and (b) in InP with neutral
vacancies. The value of the central peak has been normalized to unity. To show the detailed
structure the peak has been cut at 0.02.
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Now we show the ACFs, on the plane of (001), of positron annihilation radiation in a
perfect crystal and in various negatively charged indium vacancies. In all the figures the
peak values of the ACF have been normalized to unity and the central peaks have been cut
at 0.02 for clarity. The ACF in a perfect lattice of InP is shown in figure 1(a). There are
strong oscillations in the equivalent〈110〉 directions. This reflects the strong anisotropy of
the electron wave functions in the crystal due to the atomic bonding in these directions. The
nodes of the ACF on the rising slopes of the peaks pass nearly through the lattice points
in these directions. In this sense the ACF looks like a pattern of the lattice points as in the
case of x-ray diffraction. As pointed out by the present authors earlier [22], these nodes
shift outwards slightly from the lattice points because of the introduction of the positron
wave function. The nodes of the ACF of the perfect InP read 8.16, 15.96 and 24.01 a.u.,
corresponding to the lattice points 7.84, 15.68 and 23.52 a.u. in the [110] direction. If the
positron wave function is set to be unity, the nodes will coincides with the lattice points
exactly. This is the case in the Compton profile measurements. Outside the central peak
are the four peaks and four dips following the nearest-neighbouring lattice points. These
peaks and dips have a height of about 2% of that of the central peak. One will see that
these peaks and dips are sensitive to vacancies and their charge states. Let these nearest
peaks and dips be denoted as P1 and D1, respectively. The peaks and dips following the
next-nearest neighbouring lattice points can also be seen clearly, thus being denoted as P2
and D2.

Figure 1(b) shows the ACF in an InP crystal with neutral indium vacancies. It can be
seen that the P1 and D1 significantly attenuate, to heights of 10% and 25% of those of the
perfect crystal, respectively. However, the P2 and D2 have hardly changed their heights.
This means that the neutral vacancy greatly diminishes the P1 and D1 only. This becomes
an indication of the formation of vacancies. Another important effect is that the ACF
pattern spreads outwards compared to that in the perfect InP crystal. This is because the
momentum of the positron annihilation radiation is lowered since the positrons are localized
in the vacancies and thus annihilate much more readily with the valence electrons. For the
negatively charged vacancies the atoms around the vacancies are more relaxed inwards and
the positrons are more localized in the vacancies. The ACFs of positron annihilation in V1−

In
and V3−

In are shown in figures 2(a) and (b). It is seen that the P1 and D1 nearly disappear.
More importantly, the P2 also nearly disappear. However, the D2 remains nearly unchanged.
Therefore, the negative charge of the indium vacancy depresses mainly the P2. One obtains
another indication for the formation of the charged vacancies. Because the P2 and D2 are
weak compared to the central peak they will be invisible in their Fourier transforms, i.e.,
the 2D-ACAR spectra or the Doppler-Broadening spectra. Therefore, people generally see
only a narrowing of the Gaussian-like spectrum with increasing charges of the vacancies.

Nevertheless, to identify the different charge states V1−
In , V2−

In and V3−
In is still difficult.

Figures 2(a) and (b) show that the ACFs for the V1−
In and V3−

In are difficult to distinguish
from each other. However, the ACFs of these charge states are distinctly different from that
of the neutral state as shown in figure 1(b). The neutral vacancies greatly diminish the P1
and D1, while keeping the P2 and D2 unchanged. However, the charged vacancies virtually
eliminate not only the P1 and D1 but also P2 while keeping the D2 unchanged. This makes
it possible to identify the charged vacancies and the neutral vacancies by observing the
disappearance of P1, D1 and P2.

To see the characteristics of the ACF in these different charge states of indium vacancies
more clearly we plot the ACFs in the perfect InP, V1−

In , V2−
In and V3−

In in the [110] direction
in figure 3. The P1 and D1 of the ACF first fall in the neutral vacancy, and the ACF
spreads outwards. Then the P2 falls in the charged indium vacancies and the P1 and D1
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(a)

(b)

Figure 2. Auto-correlation function in InP with (a) V1−In and (b) V3−
In vacancies. The value of

the central peak has been normalized to unity. To show the detailed structure the peak has been
cut at 0.02.
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Figure 3. Auto-correlation function in the [110] direction in perfect InP and in indium vacancies
with different charge states. The nodes of the auto-correlation function in perfect InP correspond
to the lattice positions in the [110] direction with an outward shift. The arrows are guides of
the nodes for the eyes. P1 and D1 denote the nearest peaks and dips, respectively; P2 and D2
denote the next-nearest peaks and dips, respectively.

nearly disappear. It can also be seen that, with increasing charge of the indium vacancies,
the ACF contracts, resulting from the atomic relaxation of the charged vacancies.

In summary, the auto-correlation function method provides a tool to identify the charged
vacancies and neutral vacancies. In the case of the InP material, the nearest peaks and dips of
the ACF are firstly diminished by the neutral indium vacancies and then nearly disappear in
the charged indium vacancies. The next-nearest peaks are nearly eliminated in the charged
indium vacancies. However, the next-nearest dips are kept nearly unchanged in various
charge states. The diminution and elimination of these peaks and dips can be taken as
indications of the formation of neutral and charged indium vacancies.
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